#include <FastLED.h>

#define LED_PIN 5

#define COLOR_ORDER GRB
#define CHIPSET WS2812B
#define NUM_LEDS 150

#define BRIGHTNESS 200
#define FRAMES_PER_SECOND 60

CRGB leds[NUM_LEDS];

void setup() {
delay(3000); // sanity delay
FastLED.addLeds<CHIPSET, LED_PIN, COLOR_ORDER>(leds,
NUM_LEDS).setCorrection(TypicalLEDStrip);
FastLED.setBrightness(BRIGHTNESS);

}

void loop()

{
/I Add entropy to random number generator; we use a lot of it.
random16_add_entropy(random());

Fire2012(); // run simulation frame

FastLED.show(); // display this frame
FastLED.delay(1000 / FRAMES_PER_SECOND);

}

/I Fire2012 by Mark Kriegsman, July 2012

/I as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
1

/I This basic one-dimensional 'fire' simulation works roughly as follows:
/I There's a underlying array of 'heat' cells, that model the temperature
/I at each point along the line. Every cycle through the simulation,

/I four steps are performed:

/I 1) All cells cool down a little bit, losing heat to the air

/I 2) The heat from each cell drifts 'up' and diffuses a little

/I 3) Sometimes randomly new 'sparks' of heat are added at the bottom
/I 4) The heat from each cell is rendered as a color into the leds array
/[The heat-to-color mapping uses a black-body radiation approximation.

1

/I Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).

1

/I This simulation scales it self a bit depending on NUM_LEDS; it should look
/["OK" on anywhere from 20 to 100 LEDs without too much tweaking.

1

/I'l recommend running this simulation at anywhere from 30-100 frames per second,
/l meaning an interframe delay of about 10-35 milliseconds.

1

/I Looks best on a high-density LED setup (60+ pixels/meter).

1

1

/I There are two main parameters you can play with to control the look and

/I feel of your fire: COOLING (used in step 1 above), and SPARKING (used
/l'in step 3 above).

1

/[COOLING: How much does the air cool as it rises?

/I Less cooling = taller flames. More cooling = shorter flames.

// Default 50, suggested range 20-100

#define COOLING 55

/I SPARKING: What chance (out of 255) is there that a new spark will be lit?
/I Higher chance = more roaring fire. Lower chance = more flickery fire.

I/l Default 120, suggested range 50-200.

#define SPARKING 120

void Fire2012()

{

/I Array of temperature readings at each simulation cell
static byte heatfNUM_LEDS];

/I Step 1. Cool down every cell a little
for(inti=0;i<NUM_LEDS; i++) {
heat[i] = qsub8(heat[i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2));
}

/I Step 2. Heat from each cell drifts 'up' and diffuses a little
for(int k= NUM_LEDS - 1; k >= 2; k--) {

heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}

/I Step 3. Randomly ignite new 'sparks' of heat near the bottom

}

if(random8() < SPARKING) {

int y = random8(7);

heat[y] = qadd8(heat[y], random8(160,255));
}

/I Step 4. Map from heat cells to LED colors
for(intj = 0;j < NUM_LEDS; j++) {

leds][j] = HeatColor(heat[j]);
}

